67 research outputs found

    Performance Analysis of Evolutionary Algorithms for the Minimum Label Spanning Tree Problem

    Get PDF
    Some experimental investigations have shown that evolutionary algorithms (EAs) are efficient for the minimum label spanning tree (MLST) problem. However, we know little about that in theory. As one step towards this issue, we theoretically analyze the performances of the (1+1) EA, a simple version of EAs, and a multi-objective evolutionary algorithm called GSEMO on the MLST problem. We reveal that for the MLSTb_{b} problem the (1+1) EA and GSEMO achieve a b+12\frac{b+1}{2}-approximation ratio in expected polynomial times of nn the number of nodes and kk the number of labels. We also show that GSEMO achieves a (2ln(n))(2ln(n))-approximation ratio for the MLST problem in expected polynomial time of nn and kk. At the same time, we show that the (1+1) EA and GSEMO outperform local search algorithms on three instances of the MLST problem. We also construct an instance on which GSEMO outperforms the (1+1) EA

    On a problem of Henning and Yeo about the transversal number of uniform linear systems whose 2-packing number is fixed

    Full text link
    For r2r\geq2, let (P,L)(P,\mathcal{L}) be an rr-uniform linear system. The transversal number τ(P,L)\tau(P,\mathcal{L}) of (P,L)(P,\mathcal{L}) is the minimum number of points that intersect every line of (P,L)(P,\mathcal{L}). The 2-packing number ν2(P,L)\nu_2(P,\mathcal{L}) of (P,L)(P,\mathcal{L}) is the maximum number of lines such that the intersection of any three of them is empty. In [Discrete Math. 313 (2013), 959--966] Henning and Yeo posed the following question: Is it true that if (P,L)(P,\mathcal{L}) is a rr-uniform linear system then τ(P,L)P+Lr+1\tau(P,\mathcal{L})\leq\displaystyle\frac{|P|+|\mathcal{L}|}{r+1} holds for all k2k\geq2?. In this paper, some results about of rr-uniform linear systems whose 2-packing number is fixed which satisfies the inequality are given

    Municipal sewage sludge compost promotes Mangifera persiciforma tree growth with no risk of heavy metal contamination of soil

    Get PDF
    Application of sewage sludge compost (SSC) as a fertilizer on landscaping provides a potential way for the effective disposal of sludge. However, the response of landscape trees to SSC application and the impacts of heavy metals from SSC on soil are poorly understood. We conducted a pot experiment to investigate the effects of SSC addition on Mangifera persiciforma growth and quantified its uptake of heavy metals from SSC by setting five treatments with mass ratios of SSC to lateritic soil as 0%:100% (CK), 15%:85% (S15), 30%:70% (S30), 60%:40% (S60), and 100%:0% (S100). As expected, the fertility and heavy metal concentrations (Cu, Zn, Pb and Cd) in substrate significantly increased with SSC addition. The best performance in terms of plant height, ground diameter, biomass and N, P, K uptake were found i n S30, implying a reasonable amount of SSC could benefit the growth of M. persiciforma. The concentrations of Cu, Pb and Cd in S30 were insignificantly different from CK after harvest, indicating that M. persiciforma reduced the risk of heavy metal contamination of soil arising from SSC application. This study suggests that a reasonable rate of SSC addition can enhance M. persiciforma growth without causing the contamination of landscaping soil by heavy metals

    Research progress of extracellular vesicles and exosomes derived from mesenchymal stem cells in the treatment of oxidative stress-related diseases

    Get PDF
    There is growing evidence that mesenchymal stem cell-derived extracellular vesicles and exosomes can significantly improve the curative effect of oxidative stress-related diseases. Mesenchymal stem cell extracellular vesicles and exosomes (MSC-EVs and MSC-Exos) are rich in bioactive molecules and have many biological regulatory functions. In this review, we describe how MSC-EVs and MSC-Exos reduce the related markers of oxidative stress and inflammation in various systemic diseases, and the molecular mechanism of MSC-EVs and MSC-Exos in treating apoptosis and vascular injury induced by oxidative stress. The results of a large number of experimental studies have shown that both local and systemic administration can effectively inhibit the oxidative stress response in diseases and promote the survival and regeneration of damaged parenchymal cells. The mRNA and miRNAs in MSC-EVs and MSC-Exos are the most important bioactive molecules in disease treatment, which can inhibit the apoptosis, necrosis and oxidative stress of lung, heart, kidney, liver, bone, skin and other cells, and promote their survive and regenerate

    Identification of miRs-143 and -145 that Is Associated with Bone Metastasis of Prostate Cancer and Involved in the Regulation of EMT

    Get PDF
    The principal problem arising from prostate cancer (PCa) is its propensity to metastasize to bone. MicroRNAs (miRNAs) play a crucial role in many tumor metastases. The importance of miRNAs in bone metastasis of PCa has not been elucidated to date. We investigated whether the expression of certain miRNAs was associated with bone metastasis of PCa. We examined the miRNA expression profiles of 6 primary and 7 bone metastatic PCa samples by miRNA microarray analysis. The expression of 5 miRNAs significantly decreased in bone metastasis compared with primary PCa, including miRs-508-5p, -145, -143, -33a and -100. We further examined other samples of 16 primary PCa and 13 bone metastases using real-time PCR analysis. The expressions of miRs-143 and -145 were verified to down-regulate significantly in metastasis samples. By investigating relationship of the levels of miRs-143 and -145 with clinicopathological features of PCa patients, we found down-regulations of miRs-143 and -145 were negatively correlated to bone metastasis, the Gleason score and level of free PSA in primary PCa. Over-expression miR-143 and -145 by retrovirus transfection reduced the ability of migration and invasion in vitro, and tumor development and bone invasion in vivo of PC-3 cells, a human PCa cell line originated from a bone metastatic PCa specimen. Their upregulation also increased E-cadherin expression and reduced fibronectin expression of PC-3 cells which revealed a less invasive morphologic phenotype. These findings indicate that miRs-143 and -145 are associated with bone metastasis of PCa and suggest that they may play important roles in the bone metastasis and be involved in the regulation of EMT Both of them may also be clinically used as novel biomarkers in discriminating different stages of human PCa and predicting bone metastasis

    The analysis of evolutionary optimisation on the TSP(1,2) problem

    No full text
    corecore